首页 归档 关于 learn love 工具

进程和线程

设计进程和线程,操作系统需要思考分配资源。最重要的 3 种资源是:计算资源(CPU)、内存资源和文件资源。早期的 OS 设计中没有线程,3 种资源都分配给进程,多个进程通过分时技术交替执行,进程之间通过管道技术等进行通信。

但是这样做的话,设计者们发现用户(程序员),一个应用往往需要开多个进程,因为应用总是有很多必须要并行做的事情。并行并不是说绝对的同时,而是说需要让这些事情看上去是同时进行的——比如图形渲染和响应用户输入。于是设计者们想到了,进程下面,需要一种程序的执行单位,仅仅被分配 CPU 资源,这就是线程。

线程设计出来后,因为只被分配了计算资源(CPU),因此被称为轻量级进程。被分配的方式,就是由操作系统调度线程。操作系统创建一个进程后,进程的入口程序被分配到了一个主线程执行,这样看上去操作系统是在调度进程,其实是调度进程中的线程

这种被操作系统直接调度的线程,我们也成为内核级线程。另外,有的程序语言或者应用,用户(程序员)自己还实现了线程。相当于操作系统调度主线程,主线程的程序用算法实现子线程,这种情况我们称为用户级线程。Linux 的 PThread API 就是用户级线程,KThread API 则是内核级线程。

进程和线程的状态

旧的操作系统调度进程,没有线程;现代操作系统调度线程。

一个进程(线程)运行的过程,会经历以下 3 个状态:

  • 进程(线程)创建后,就开始排队,此时它会处在“就绪”(Ready)状态;
  • 当轮到该进程(线程)执行时,会变成“运行”(Running)状态;
  • 当一个进程(线程)将操作系统分配的时间片段用完后,会回到“就绪”(Ready)状态。

有时候一个进程(线程)会等待磁盘读取数据,或者等待打印机响应,此时进程自己会进入“阻塞”(Block)状态。因为这时计算机的响应不能马上给出来,而是需要等待磁盘、打印机处理完成后,通过中断通知 CPU,然后 CPU 再执行一小段中断控制程序,将控制权转给操作系统,操作系统再将原来阻塞的进程(线程)置为“就绪”(Ready)状态重新排队。

而且,一旦一个进程(线程)进入阻塞状态,这个进程(线程)此时就没有事情做了,但又不能让它重新排队(因为需要等待中断),所以进程(线程)中需要增加一个“阻塞”(Block)状态。

注意,因为一个处于“就绪”(Ready)的进程(线程)还在排队,所以进程(线程)内的程序无法执行,也就是不会触发读取磁盘数据的操作,这时,“就绪”(Ready)状态无法变成阻塞的状态,因此下图中没有从就绪到阻塞的箭头。

而处于“阻塞”(Block)状态的进程(线程)如果收到磁盘读取完的数据,它又需要重新排队,所以它也不能直接回到“运行”(Running)状态,因此下图中没有从阻塞态到运行态的箭头。

区别

我们发现进程和线程是操作系统为了分配资源设计的两个概念,进程承接存储资源,线程承接计算资源。而进程包含线程,这样就可以做到进程间内存隔离。这是一个非常巧妙的设计,概念清晰,思路明确,你以后做架构的时候可以多参考这样的设计。 如果只有进程,或者只有线程,都不能如此简单的解决我们遇到的问题。

来源

《重学操作系统》